02.27.19: The logical problem of language acquisition
Sets and subsets

A **set** is a collection of objects.

This is the set of positive integers from 1 to 20.

A **subset** is a set (a collection of objects) that is contained within another set.

This is the set of positive, even integers from 2 to 20.
Infinite sets

Sets can be **infinite**, which means they can contain an infinite number of items:

The set of real numbers:
(basically any integer, fraction, decimal, negative)

This is easiest to demonstrate with numbers. You know that the set of possible numbers is infinite.
Infinite subsets

The **subsets of an infinite set** can be infinite too. Again this is easiest to see with numbers:

- **The set of real numbers:**
 (basically any integer, fraction, decimal, negative)

- **The set of rational numbers:**
 (anything can be stated as a fraction)

- **Integers:**
 ... -3, -2, -1, 0, 1, 2, 3, ...

- **Natural numbers:**
 1, 2, 3, 4...

You know that in math we can define subsets of numbers that are themselves infinite. For example, the natural numbers (or counting numbers) are a subset of the full set of possible numbers, and they are infinite.
Finite subsets of infinite sets

Obviously, you can also have a **finite subset of an infinite set**. The purple set below is finite (it only contains 3 items).

Notice that this finite subset is a member of all of the infinite sets that we’ve discussed so far. This is crucial, because it gives us our first glimpse of the learning problem that we face: the finite subset is not enough information to pick one (and only one) infinite set.
The learning problem

Imagine that somebody gave you the sequence: 2, 4, 8

They tell you that this sequence comes from an **infinite set** of numbers. It is a finite subset of an infinite set. Your task is to figure out which infinite set this finite subset comes from.

You are allowed to ask them for more information (but not the name of the infinite set). **What would you ask them?**

The moral of this example: Learning infinite sets from finite subsets is impossible without a help. And, only a certain type of help is actually helpful.
Let’s try **positive evidence**

Option 1: You could ask them to produce more numbers that are in the set

We call this **positive evidence**. Positive evidence is evidence about which items are **present** in the infinite set.

Notice that this is mathematically equivalent to making the finite subset larger:
The problem with positive evidence

The problem with positive evidence is that there is no guarantee that we will get the relevant evidence (i.e., evidence that allows us to eliminate the incorrect sets and settle on the correct one). Here is a concrete example:

The five numbers we have so far can fit in any of these three sets.

We can add more numbers, but they could still all fit in all three sets. The extra numbers don’t help us.

(When humans do this, it feels mean. But in nature, it could just be an accident.)
Let’s try **negative evidence**

Option 2: You could produce new numbers, and ask me whether they are in the infinite set (whether they obey the rule or not).

We call this **negative evidence.** Negative evidence is evidence about which items are **absent** from the infinite set.

Unlike positive evidence, negative evidence can be very powerful if you use it strategically.

If you are strategic, you can eliminate potential infinite sets from consideration. In other words, you can test hypotheses until you find the correct one.
The power of negative evidence

Let’s say we have 3 sets under consideration.

Let’s start with the largest superset.

We need to guess a number that is part of the largest superset, but not part of the subsets.

If I say “yes” to it, then it is positive evidence, and not very helpful. But if I say “no”, it is negative evidence. It tells you that any set that includes 7 will be incorrect. So we can eliminate all of the sets that include 7.

Now we only have two sets left.

So let’s guess a number that is in the blue set but not the red set.

If I say “no”, then we can eliminate any set that includes 10!
Positive Evidence and Negative Evidence

Positive Evidence: Evidence about which items are present in the infinite set.

The problem with positive evidence is that there is no guarantee that the relevant evidence will be given. It might happen; it might not.

Negative Evidence: Evidence about which items are absent from the infinite set.

The benefit of negative evidence is that you can eliminate potential infinite sets from consideration. In other words, you can test hypotheses until (over time) you find the right one.
How does this matter for language?
Language learning is the generalization from a finite subset to an infinite set

Fact 1: All human languages can be characterized as an infinite set of sentences.

Sarah wrote a novel.

Lisa claims that Sarah wrote a novel.

Mary thinks that Lisa claims that Sarah wrote a novel.

John said that Mary thinks that Lisa claims that Sarah wrote a novel.

Language is an infinite set of sentences.
Language learning is the generalization from a finite subset to an infinite set

Fact 1: All human languages can be characterized as an infinite set of sentences

John said that Mary thinks that Lisa claims that ...

Fact 2: The input that children receive when learning their language is finite.

Fact 2 has to be true because human learn language in a finite amount of time (maximally 14 years, more likely ~6 years).

Language is an infinite set of sentences

language input is a finite set of sentences that is a subset of the infinite set of the language
Language learning is the generalization from a finite subset to an infinite set

Fact 1: All human languages can be characterized as an infinite set of sentences

John said that Mary thinks that Lisa claims that ...

Fact 2: The input that children receive when learning their language is finite.

Fact 3: All children succeed at language acquisition, except for atypical circumstances (diseases, disorders, imprisonment, etc).

As one professor once remarked to me: “We talk about the literacy rates of different countries. But have you ever heard anyone talk about the speaking rates of different countries?”

Of course not. That is because everybody succeeds at learning language.
Positive evidence for language acquisition

It is fairly uncontroversial to claim that children have access to positive evidence. After all, positive evidence is just another name for input, and people do speak to (and around) children!

There is a freely available corpus (corpus means body or collection) of transcripts of children engaging in conversation across a wide range of ages (and several languages). It is called the Child Language Data Exchange System, or CHILDES:

http://childes.psy.cmu.edu/

You can use this corpus to see the positive evidence that children receive while learning their native languages
Negative evidence for language acquisition

The trickier question is whether there is negative evidence available to children.

Negative evidence in language would be some sort of response by the parent after a child produces an ungrammatical sentence. But crucially not after a grammatical sentence.

This response need not be an explicit correction. It could take any number of forms (these are adapted from Marcus 1993):

Explicit disapproval:
Parent says no or shakes head.

Non sequiturs:
Parent fails to understand child.

Repetitions:
Parent repeats the child utterance.

Recasts:
Parent corrects the child utterance.

Questions:
Parent asks for more information.
Problem 1: Feedback from parents is noisy

Here is another problem: parents provide feedback of various kinds after both ungrammatical sentences and grammatical sentences.

A study by Bohannon and Stanowicz 1988 found that parents gave feedback to children after ungrammatical sentences 35% of the time; and they gave feedback to children after grammatical sentences 14% of the time.

This means that children couldn’t be sure that the correction was because of the sentence being ungrammatical, or just because parents like to give feedback. In other words, feedback is noisy. It is not a clear indicator of ungrammaticality.

I won’t go into the math, but Marcus 1993 calculated that the rates of feedback for ungrammatical and grammatical sentences mean that children would have to repeat a sentence 85 times in order to determine whether the feedback that they were receiving was because it was ungrammatical, or whether it was because it was grammatical (i.e., to figure out if it is the 35% rate or 14% rate). Obviously, children don’t repeat sentences 85 times to figure out if they are part of the language or not.
Problem 2: Children **ignore** negative evidence

child: Want other one spoon, Daddy.

parent: You mean, you want the other spoon.

child: Yes, I want other one spoon, please Daddy.

parent: Can you say “the other spoon”?

child: Other... one... spoon.

parent: Say “other”.

child: Other.

parent: “Spoon”.

child: Spoon

parent: “Other spoon”.

child: Other... spoon. Now give me other one spoon?
... or **misinterpret** it

child: Nobody don’t like me.

parent: No, say “nobody likes me”.

child: Nobody don’t like me.

parent: No, say “nobody likes me”.

child: Nobody don’t like me.

parent: No, say “nobody likes me”.

child: Nobody don’t like me.

parent: No, say “nobody likes me”.

child: Nobody don’t like me.

parent: No, say “nobody likes me”.

child: Nobody don’t like me.

parent: No, say “nobody likes me”.

child: Oh! Nobody don’t likes me.
The logical problem of language acquisition

And now we are ready to lay out the logical problem of language acquisition:

Fact 1: All human languages can be characterized as an infinite set of sentences

Fact 2: The input that children receive when learning their language is finite.

Fact 3: All children succeed in learning language.

Fact 4: Negative evidence would guarantee that the infinite set can be learned.

Fact 5: But children do not make use of negative evidence.

Conclusion: We have a paradox. Children learn an infinite set from a finite set, but don’t use the one method (negative evidence) that would guarantee the solution.

This is the logical problem of language acquisition: Children are able to learn language despite not having enough evidence to learn it!
This is sometimes called Plato’s problem

You’ve probably heard of Plato before. He was a Greek philosopher/thinker who lived from ~427BC to ~347BC (80 years!). He was a student of Socrates, and the founder of the Academy, most likely the first “university” in the western world.

Plato investigated hundreds of complex questions in his lifetime. One of them was the question of how we humans can have so much knowledge, when the environment provides so little evidence to help us build that knowledge.

If we apply this question to linguistic knowledge, it becomes the **logical problem of language acquisition**. It is also sometimes called the **poverty of the stimulus**, because it highlights the fact that the input (the stimulus) is too poor (impoverished/poverty) to fully specify the knowledge that we learn.

Whatever name you choose, this is a deep mystery about human knowledge. How is it that we learn all that we do from the input that we receive? It has puzzled thinkers for thousands of years, and still puzzles us to this day.
Pure Nativism vs Pure Empiricism

The logical problem of language acquisition is one specific example of a debate between two (extreme) positions about where knowledge comes from:

Pure Nativism

The Nativism solution says that human biology solves the problem. All knowledge is innate (present from birth), and we simply bring that knowledge out as we grow.

Nativism was the solution first proposed by Plato to Plato’s problem.

Pure Empiricism

Empiricism denies that there is a problem. It says that all knowledge comes from experience (or the input). We just have to figure out how that happens.

Empiricism was most strongly advocated by John Locke, an English philosopher who lived from 1632-1704.

These are extreme positions. Nobody in the modern age of cognitive science believes these are correct. Instead, we explore theories in the middle.
The spectrum of Nativism and Empiricism

One tricky aspect of the debate between Nativism and Empiricism is that the two ideas actually form a spectrum:

Pure Nativism:
(Plato)
all knowledge comes from biology, no knowledge comes from experience

Pure Empiricism:
(Locke)
all knowledge comes from experience, no knowledge comes from biology

Modern Nativism:
substantial knowledge comes from biology, but experience/input still plays an important role

Modern Empiricism:
some knowledge comes from biology, but experience/input plays the most important role
Noam Chomsky and Modern Nativism

Noam Chomsky is an American linguist, often considered the father of modern linguistics and a major figure in cognitive science.

I am not exaggerating when I say that his ideas have been instrumental in shaping all of the studies we’ve discussed in this class. He is also a modern proponent of a Nativist approach to language learning.

1928 - today

Noam Chomsky is also known for his writings about political science and government, but in this class we will focus on his contributions to linguistics.
Modern Nativism vs Modern Empiricism

So here is the more moderate views that are debated today... which we can apply to the logical problem of language acquisition in this class.

Modern Nativism

- Substantial innate knowledge
- Input/experience still plays a role, but less than the role it plays in empiricism.

In short, children come to the problem with a lot of genetic help, and then use experience to hone in on the correct answer.

Modern Empiricism

- Minimal innate knowledge
- Input/experience plays the largest role in learning

In short, children come to the table with the ability to learn from experience, and use experience to build up all of the complexity of language.
What could that innate knowledge be?

Well, the theory of language that we have built so far already provides a starting point for investigating this. Over the next few lectures, we will explore these ideas by looking at actual facts about child language acquisition!

Principles:

The fact that all languages share certain properties might indicate that those properties are hardwired in some way.

Parameters:

If parameters were built-in, then the learning problem would be simpler: children just need to figure out the right values.

The ability to learn complex rules:

Phonology, morphology, and syntax all seem to be predicated upon complex rules, suggesting that humans have the ability to learn complex rules.

The ability to learn phonemes and morphemes:

Our memorization abilities must be powerful enough to learn the phonemes and morphemes of our languages.
Some Conclusions

Positive Evidence is evidence about which items are present in the infinite set. The problem with positive evidence is that there is no guarantee that the relevant evidence will be given. It might happen; it might not.

Negative Evidence is evidence about which items are absent in the infinite set. The benefit of negative evidence is that you can eliminate potential infinite sets from consideration. In other words, you can test hypotheses until you find the right one.

Children appear to be able to learn language (an infinite set) from finite input (a finite set) without using negative evidence.

This is the logical problem of language acquisition: Children are able to learn language despite not having enough evidence to learn it!

Nativism is the idea that knowledge can be specified by biology (innate knowledge). Modern nativism still allows for a role of input/experience.

Empiricism is the idea that knowledge comes from input/experience (not biology). Modern empiricism still allows for a small role for biology.